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Particles dispersed in a liquid crystal above the nematic-isotropic phase transition are wetted by a surface-
induced corona of paranematic order. Such coronas give rise to pronounced two-particle interactions. In this
paper, we report details on the analytical and numerical study of these interactions published [Btgstly
Rev. Lett.86, 3915(2001)]. We especially demonstrate how for large particle separations the asymptotic form
of a Yukawa potential arises. We show that the Yukawa potential is a surprisingly good description for the
two-particle interactions down to distances of the order of the nematic coherence length. Based on this fact, we
extend earlier studies on a temperature induced flocculation transition in electrostatically stabilized colloidal
dispersiong Phys. Rev. E61, 2831 (2000]. We employ the Yukawa potential to establish a flocculation
diagram for a much larger range of the electrostatic parameters, namely, the surface charge density and the
Debye screening length. As a distinguished feature, a kinetically stabilized dispersion close to the nematic-
isotropic phase transition is found.
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I. INTRODUCTION terics[8]. Such systems form composite materials with un-
usual propertie§9—11].

Colloidal dispersions are suspensions in a host fluid of Even more recently, there has been a growing interest in
solid or liquid particles, of radius ranging from 10 nm to the pretransitional surface-induced interactions mediated by
10 um [1]. They are long-lived metastable states of matterthe paranematic order arising in the vicinity of surfaces at
that present great interest both from a fundamental point ofemperatures above the nematic-isotropic phase transition. In
view and in applications, e.g., in paints, coatings, foods, andRef.[12], the force between two parallel plates immersed in
drugs. Their stability against flocculation is a key issue ina liquid crystal slightly above the bulk isotropic-nematic
colloidal physics, since the properties of a colloidal dispertransition was theoretically investigated. In RgL3], the
sion drastically change when a transition from a dispersed téorce between a flat surface and a glass microsphere, medi-
an aggregate state occurs: to prevent coagulation due to ated by the surface-induced paranematic order, was experi-
tractive van der Waals forces, colloidal particles are usuallymentally measured using an atomic force microscope. The
treated in order to produce electrostatic or steric repulsiveneasurements were interpreted in terms of the force between
interactions. two flat surfaces using the Derjaguin approximatja#.

Recently, great attention was paid to liquid-crystal colloi- Interesting effects regarding the stabilization of colloids
dal suspensions and emulsions, i.e., dispersions of solid pasre thus to be expected in tligtropic phase of a nemato-
ticles or liquid droplets—respectively—in a liquid crystal genic material when the colloids are wetted by a corona of
[2—6]. In the case of emulsions in a nematic phase, the radigdaranematic ordgil5-17. Two effects compete: an attrac-
anchoring of the nematic molecules at the surface of théion due to the favorable overlapping of the paranematic ha-
droplets yields topological defects of the nematic texture irlos (which reduces the volume of the thermodynamically un-
the vicinity of the droplets. These defects produce strongavorable paranematic phasand a repulsion due to the
repulsions that stabilize the liquid droplets against coalesedistortion of the director field. The vicinity of a phase tran-
cence[4]. Similar effects are present also in other anisotropicsition may give a critical character to the stabilization
fluid hosts, such as lyotropic solutions of anisotropic mi-mechanism and yield rich reversible phase-separation behav-
celles[7], and in different liquid crystal phases, as in choles-iors, as predicted in Refg18,19 for a simpler system with a

scalar order parameter. In R¢fL5], the interaction of two
spherical particles immersed in a liquid crystal above the
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ence length. This approximate solution was used in R&.  however biaxiality naturally arises in inhomogeneous situa-
to analyze the stability of a suspension of such colloidattions, e.g., in the vicinity of defectg23]. The Landau—de
particles, in the presence of destabilizing van der Waals atSennes expansion of the bulk free-energy densi] has
tractive interactions and stabilizing electrostatic repulsionsthe form[24,25
In Ref. [16], an exact numerical solution for the above b .

aranematic interaction was obtained, using a multipolar ex- , & C 2
gansion of the tensor order parameter and tgking int(F)) account' b~ 2 Qi1 Qi ™ 3 Qi QuQuat 7 (R4 Qi)™+ 5 QijiQij k-
biaxiality. The possibility of stabilizing colloidal particles (1)
was discussed, emphasizing the case of rather small particles, . o L
i.e., of size comparable to several nematic coherence lengthsUmmation over repeated indices is implied and the comma
A large-separation asymptotic analytic form of Yukawa typemdmates. derivation. The qqeﬁ|0|ents are such ﬂngta(T
was also obtained, that was shown to very closely describe T*), with «, ¢, andL positive. The temperatug” is the
the exact interaction between large particles up to separation@Vest temperaturg, at which the isotropic phase can exist.
comparable to the nematic coherence lefigt. Alternative 1€ presence of the cubic ter@; Q;Qy; in the homoge-
derivations of the Yukawa potential were given in Réf7] neous part implies that the nematic-isotropic transition is of

based on a Debye-lkel type approximation and a geomet- first order. To simplify the description, we have introduced
ric view. only one gradient term in Eq1), which corresponds to the

In this work, we revise in detail the solution found in Ref. Usual one-constant approximatigi6]. The most general ex-

[16], which is exact in the limit of weak surface-induced Pansion of the surface free-energy density2s,28
paranematic order. We give a particular emphasis on the

meaning and limits of validity of the approximate asymptotic fs=0,Qiviv;+ U—ZlQijQij + U—ﬂQiijkvi i
solution. The latter is used to analyze in detail the stability of 2 2

a colloidal suspension in the presence of van der Waals and v

electrostatic interactions. We obtain and discuss general dia- + —23Q”Qk|vi v +0(Q%), 2
grams for the stability of the suspension as a function of the 2

various relevant parameters. where they;’s (i=1,2,3) are the components of the outward

The detailed plan of our paper is the following. In Sec. Il : :
i normalw of the surface. Owing to the linear term, the surface
we describe our Landau—de Genh2g] model for the bulk always locally favors a nonzero order.

and the surface free energy. In Sec. lll, we present the cor- Since we are dealing with the isotropic phase, and, in

responding equilibrium equations and formulate the generaZdeition we assume a weak surface-induced order and tem-

multipolar expansion for the bulk order parameter in spheri, eratures not too close to the phase transition, we can neglect

cal coordinates. This expansion is used in Sec. IV to obtai he third- and higher-order terms fg andf. [15,16]. Then,

the exact solution for an |splate(j_ spherlcal partlcle. The Nthe free energy being quadratic, exact calculations are fea-
teraction of two such particles is discussed in Sec. V. In

. . . o sible. To simplify, we shall also retain only the simplest qua-
B . B b e derve I Ssymplole. e e urace tem, by Seting=0 andyzc—0. The tr
nergy. ymp o ) yze& free-energy densities can be put in the form
V B 2 in terms of the superposition of single-particle solu-

tions. In Sec. V B 3, we discuss the limits of validity of the a L
Derjaguin approximation. In Sec. V C, we present an exact szzQ”Qij + EQ”"‘Q”"“ (3a)
numerical solution for the interaction of two particles. The
comparison between the asymptotic interaction energy and
0 L ot fo= EW(Q; — Q) (Q; - Q). (3

the exact numerical one is performed in Sec. V C 1. In Sec.
V C 2, we discuss the texture between two interacting parynere
ticles, and in Sec. V C 3, we analyze the defect ring that

appears in the paranematic texture between the two particles. Qi(jO): So(vivj— z ) (4)
Finally, in Sec. VI, using our asymptotic solution, we discuss
the stability of such colloidal dispersions. is the preferred order parameter at the surface. The surface

free-energy density3b) is compatible with the experimen-
tally measured anchoring in the nematic phg8.
Il. MODEL In the following, unless otherwise specified, we shall nor-

Let us first describe the nematogenic phase in which thdalize Ielr)zgths with respect to the nematic c%rrglation length
colloids will be placed. Nematic liquid crystals are aniso-¢=(L/@) " and energies with respect kp=a¢"S;. Due to
tropic liquid phases, in which elongated molecules display 4he conditions thaQ;; must be symmetric and traceless, the
long-range orientational order. This order is described by dree-energy densitiei$) are not diagonal in the five indepen-
symmetric traceless tensorial order parame@y (i,j ~ dent components d@;; . Defining the following set of com-
=1,2,3), since nematics are nonpdlag]. The eigenvectors Ponents:
of Q;; represent the axes of main molecular orientation and 0.~ Q
its eigenvalues describe the amount of orientational ordering Jo= XX W' (53
in each direction. Usually, nematics are uniaxial phases, So
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Qyz sz ” ‘
h=g =5, (5b) ai(r.0.¢)=2 2 aMudr)Yem(6,4), (9
=0 m=—¢
Q,, Q. where the functionsi,(r) obey the equations
q2:_ =c (SC)
So So d/ .du
ar I’ZW =[I’2+€(€+1)]U(, (10
_ Qxy _ ny (5d)
9s= S5 S which follows by inserting expansio®) into the bulk equa-
tion (7). The solution of Eq(10) that is regular at infinity can
Q,, be expressed as
Q=< (5¢)
So [2
Ue(r)= —rKe+1/2(r), (13)
the normalized free energy takes the followidgagonal m
form: where theK,, 1,x(r) are modified Bessel functions of half-
4 integer order. Explicitly,
F=2> ciU[q?+<ti>ZJd3r+wf (qi—q§°>>2d2r], e
1=0 Ug(r)=—, 12
© o)== (123
where cy=1/4, c;=c,=c3=1, c,=3/4, andw=W/a¢ is e’ 1
the normalized anchoring strength. The first integral is over uy(r)= r 1+ r)’ (12b
the bulk and the second one over the surface of each colloi-
dal particle. Due to this transformation, the tensorial problem e " 3
associated with the paranematic order between the colloids is Uy(r)= - 1+ T + =] (120
reduced to the superposition of five independent scalar prob- r
lems.

U€+1(r): 1U€(r)+u€_1(r) for €=1. (12d)

I1l. EQUILIBRIUM EQUATIONS AND SOLUTIONS
At equilibrium, the order-parameter texture minimizes theWith such an expansion, the paranematic order is thus com-
free energy(6). By setting to zero the variatiodF of the  Pletely described by the set of coefficienfs".
free energy, associated with arbitrary infinitesimal variations

of the g; components, we obtain the equilibrium equations B. Equilibrium free energy
) By integrating by parts Eq6) and using the equilibrium
(V°=1)q;=0, @) equationg7) and(8), the normalized free energ$) associ-

. ated with an equilibrium solution can be written as
in the bulk, and

4
v-Vai=w(q—q®), (8) F=wi=§‘6 ¢ | aaql®—qpd?r, (13)

on the surface of each colloidal particle. Determining thewhere the integrations run over the surfaces of all the par-
paranematic order outside the colloidal particles is thereforggles.

somewhat similar to solving an electrostatic problem with

mixed boundary conditions, in which the potential is re- |\, pARANEMATIC ORDER AROUND ONE PARTICLE
placed by theg; fields and the standard Laplacian operator

by V2—1. We shall therefore use multipolar expansions. Ac-  Let us consider a spherical particle of reduced ra&ius
tually, the operatoV2—1 is the operator associated with a spherical coordinates (6, ¢), the normal to the surface of
massive boson field, which implies a short-range interactionhe particle is given by r=sin 0cos¢§<+ sin@sin ¢§/

[29]. +coséz. Therefore, the preferred surface order parameter
(4) has the followingg componentgsee Eqs(5)]:
A. Multipolar expansion

/2
In spherical coordinates (6, ¢), the spherical harmonics qgo)zsir@g cos 2p=4 _Trygz( 0,¢), (143
Y./m(6,¢) (for their definition, see the Appendiare eigen- 15
functions of the angular part of the Laplacian operdidr

and form a complete basis. Then, each of ths can be (0):1 . o 2_77 I
expanded as ai 23|n205|n¢ 24/ 15 Y51(6,0), (14b
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1 oy LO T o
a==sin20 cosp=—2\/==Y5(0,¢), (140 SORE ]
> 15 Y =
2L w=3 4
= |
1 2 =
Q)= JsiPhsin 26 =2\ Vb 6,6), (140 2+

q{®=cog6— %= g\/ngo(ey(ﬁ): (149 i

where 0.0 m R AR

1 1 10 100 1000
R _ * R
Yem—E(ng+Y€m), (159
FIG. 1. Normalized scalar order parame&R)/S; at the sur-
1 face of one isolated spherical colloid as a function of its normalized
v =y, v 150 radiusR for various reduced anchoring strength
fm 2i ( {m fm) ( )

] ] ) _ nar interface. FoR=10 (in units of £), the surface order
are the real and imaginary parts, respectively, of the sphericglarameter is reduced because of the energy cost associated
harmonics. The boundary conditiof® become simply with the splay of the director.
o, The free energy of the particle is obtained from ELR).
_I|r:R:W[Qi(Rv 0,d)— i(0)( 0,4)]. (16) With the help of Eqs(1_4) and(1.7) and the orthonormality of
or the spherical harmonics, we find

R(eogjlaci.ng in Eq(lﬁ) q; py itg multipolar expansip(@) and - 9 9
g;’ by its expression given in Eq6l4), and identifying the F1=?A(R,w) R+4+ §+ |- (20
. ; i i i R
coefficients of the spherical harmonics, yields the solution
q 2Y540,¢) V. INTERACTION OF TWO PARTICLES
0 |
q ~Yu(6,¢) Let us now consider two identical spherical particles of
! 2 _Ygl( 6,d) reduced radiuRR separated by a center-to-center distadce
9=\ | 2A(R,w)eRuy(r), We introduce three spherical coordinate systems: a global
03 Y2 0.9) one, ,0,¢), symmetrically placed with respect to the par-
2 ticles, and two local onesy{,6,,¢) and (,,6,,¢), cen-
da 3 Y20(0,9) tered on the two particles, as indicated in Fig. 2.

17
A. General formalism

where the amplituded(R,w) is given by Using the symmetry of the system allows one to reduce

the number of free parameters in the tensorial order-

— R'w (18 parameter field. For a given poift the planellp passing
R3(w+1)+R*3w+4)+3R(W+3)+9 through P and thez axis is a symmetry plane. Thus, the
frame €Y,el?),e®) in which Q;; is diagonal has two direc-
andu,(r) is given by Eq.(120). tionseY) andel® in the planellp and the thirdg®), normal

Since Eq(17) has the same angular structure as Et§),  to it. This frame can be parametrized by the an@lg, 6)
the order parameter is uniaxial with a radial direater v,  thateX) makes with thez axis:
i.e.,Qij:S(r)(ViVj_%éij), where R . .

eV=sin® cos¢ x+sin® singy+cosOz, (219

3 3 R—r
S(N=SpARW)| 1+ -+ r_z) r (19 &2 =cos® cospx+cosO singy—sin®z, (21b)
is the uniaxial scalar order parameter. Note that whatever the e®) = — sin px+ cosay. (210

size of the particle, the paranematic order relaxes on the

coherence lengtlf (equal to unity in reduced unjtsThe  Therefore, the order-parameter ten€yy can be written as
behavior of the scalar order parameter at the surface of the

particle {=R), as a function of the radiug, is shown in Qij=r1eMelV+ ) ,ePel®) 4 ) ;6Pe®), (22)
Fig. 1. For large values oR, the surface order tends to

S(R) = Sew/(1+w) which corresponds to the limit of a pla- where its eigenvalues; satisfy
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z,21 only one expansion, one would impose that the analytical
continuation of the texture is regular inside the other particle
(because the multipolar expansion is regular everywhere but
atr=0), which is not required. Therefore, in the most gen-
eral case, there must be a second multipolar source inside the
other particle. For two identical particles, this is also obvious
from symmetry considerations.

Taking into account the general for(24) and the fact that
(x,y) is a symmetry plane, the double multipolar expansion
takes the formsee also the Appendix

o0 2
a(r,0) =(22 21 agu(rp)P2(cosd,), (268
e

w 2
FIG. 2. Geometry for the calculation of the paranematic inter- B(r,0)= Z Z 1)PBeu(rp)P, (cosby), (26b)

action between two identical spherical colloidal particles separated t=1p=1

by a center-to-center distande The origin of thez axis is at the

midpointO between the centers of the two particles, that,cdit the w2

centerO, of the upper particle, and that f at the cente©,, of the r,o)= uA(r)P.%cose 260

o erL 0 ¥(10)=2 2 P (cosfy). (269

=— (N + . .
Ae=~(A1tha), 23 Thus, at this point, the whole order-parameter texture is

sinceQ;; is traceless. The correspondingcomponentgs)  Uniquely determined by the set of coefficients (with ¢

are therefore =23,...), B¢ (with €=12,...), and y, (with ¢
=0,1,...).
Qo= a(r,f)cos 2p, (249
. 2. Boundary conditions
q:=p(r,0)sing, (24b)
Due to the presence of thex,ff) symmetry plane, we
.= B(r,0)cosd, (240 need to impose the boundary conditidi® only on one of
the particles, let say particle 1. These boundary conditions
Oz=3a(r,0)sin 2¢, (240  on theq components transform to boundary conditions on
the fieldsa, B, andy [see Eqs(24)], which in the coordi-
qs=y(r,0), (249  nates (,,6,) relative to particle 1, take the form
with ) )
iy (11=R,0)— = P,coshy)|, (273
A A —|r.=r=W| a(r;=R,0,)— 5 cos ,
a(r,0)= =2 (1+si0)+ —2(1+cog®), (259 gry TR g Y
So So
ANi—Ng B [ 1, '
B(r,0)= 75, 2sin 20, (25b) aTl|f1=R:W_ﬁ(r1:R’91)+§P2 (cosal)_, (27p)
y(r,0)= —co§®+—sm2® (250 dy [ 2 ]
So o mlrfR:W y(ri=R,0;)— _Pz (C0591) . (279

Hence the order-parameter field around two particles is fully

described by the three fieldg(r, ), B(r,0), and y(r,0). )
y ae(r.0). B(r.6) Ar.6) Note that these equations are decoupled; therefore the three

1. Multipolar development fields @, B, andvy can be treated independently.

For two particles, the most general expressiorQgf in
terms of multipoles must be a sum twfo multipolar expan-
sions of the kind(9), each one centered on each one of the To impose the boundary conditio®7) on the multipolar
particles. The reason is the following. Since a multipolarexpansions26), we need to express the spherical coordi-
expansion such as E) is singular at the originr(=0), the  natesr, and#, in terms ofr, and4,. From Fig. 2, we easily
latter must be put inside one of the particles. Moreover, usin@btain

3. Coordinate transformation
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r,=ri+d?+2dr, coséy,

(28a

r,cosf,+d
Jr2+d?+2dr; cosh;

coSsf,= — (28h)

B. Asymptotic solution

The exacttwo-particle order-parameter textu{26) satis-
fying the boundary condition$27) cannot be determined
analytically, owing to the intricate relatiori28) that link the

PHYSICAL REVIEW E67, 031404 (2003

Replacing Eq(31) into Eq. (29 yields the required expan-
sion of y. To match the boundary conditions, let us deter-
mine the corresponding expansion for the radial derivative of
v. To this aim, it is most efficient to take into account that
the radial functiong12) obey the relations

dun(r)  nuy(r)

dr r (32

_un+1(r)-

local coordinate systems centered on the two particles. Howp/e then obtain

ever, in the limitd>1, i.e., for distances large with respect

to the nematic coherence lengiheven ifd—2R<R), we
can obtain amsymptoticsolution by expanding the unknown
multipolar coefficientsa,, B,, andy, in series ofe”9/d"
up to a given orden. In the following, we shall obtain the
lowest-order expansiom=1. It turns out that to this order
the only nonzero terms in the multipolar expansi@@® are
those up tof =2.

To begin with, we illustrate the strategy for computing the

v, coefficients. We start by writing the expansi@6c) on
particle 1 {;=R) up to{=2:

¥(r1=R,0;1) = yo[ Uo(R) P (c0S8;) + Up(R2) Py (c0SO ) ]
+y1[uy(R)P,°(cosfy) + u; (Ry) P, °(cosO,)]
+ ¥o[ Ua(R)P,2(c0s;) + Us(Ry) P,2(c0s®,) ], (29)

whereR,=R5(0,) is ther, coordinate(289 evaluated on
particle 1 {;=R), and, similarly, co®,=cos0,(6,) is the
cosé, coordinate(28b) evaluated on particle 1. Next, we
asymptotically develop the functionsl(Rz)Pno(cos(Dz) up
to terms of the ordee™ %/d,

—d

0 ne —Rcosé
Un(R2)P,7(cosB,)=(—1) 5 ¢ 1, (30)

and we redevelop this expansion on the complete basis of

Legendre functions of first kintﬂ’no(cos(@l), using the or-
thogonality relations(A3). Truncating the expansion dt
=2, for the sake of consistency, we arrive at

o ne*d sinhR _ |
Un(Rp) P, (cos®,)=(—1) <1 Rr Po (cos6;)

R
coshR sinhR|_ |
- R - P, (cosé,)

sinhR 3 coshR N 3 sinhR
R R? R®

X on(cosel)} : (31

ay 0
v —r= 0] —U1(R)Py"(cosb;)
arqg't

J 0
+ o [Uo(r2)Po(costy) ]y -k
1

+ ’}’1{

d 0
=+ m[ul(rz)Pl (00502)]r1:R

+ 7’2(

d
+ aT[Uz(rz)on(cosﬁz)]rfR] . (33
1

u(R)
R

—uy(R) |P,%(cosb,)

2U(R)
R

- u3(R)} P,%(cos#,)

in which, according to Eq(31),

J
m[un(rZ)Pno(COSQZ)]r1=R

coshR sinhR

R R P,%(cosb;)

o-d
=(=1"

sinhR 2 coshR N 2 sinhR
R R2 R3

P,%(cos#,)

coshR 4 sinhR N 9 coshR 9sinhR
R R?2 RS R*

X on(cosal)] : (34

Finally, we insert the relation&9), (31), (33), and(34) in
the boundary conditio27¢). Due to the orthogonality rela-
tions (A3), we get three linear coupled equations for the
unknown coefficientsy,y, v4, andy,. Solving them to the
leading order inre~9/d yields, after some lengthy algebra,
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—d
Yo= eT{eRR4W{R(W+ 1)+ 1-e®R[R(w—1)+ 1]} < {3[R*(w+1)?+ R3(3w?+ 8w+ 5)

+R2(3w?+ 15w+ 13) + 6R(2w+3) + 9]} 2, (353

—d
y1= eT{eRR4w{R2(w+ 1)+ R(w+2)+2+e®[R*(w—1)—R(w—2) - 2]}HR3(w+ 1)+ 2R*(2w?+ 5w+ 3)

+ R3(6W?+ 24w+ 19) + R?(3w?+ 30w+ 35) + 3R(5w+ 12) + 18} 1, (35b)
2 5e ¢ e?RA(RW)[R¥(w—1)—R*3w—4)+3R(w—3)+9
vo==ARW)eRX{ 1+ = —|1— (RW)IRY ) ( ) ( )+9] . (350
3 2 R4W
|
The calculation of the remaining coefficients and 8, is — 87R8w2e(d-2R)
much simpler since, to the leading orderén?/d, they do Fini= 3 5 5
not depend oml, because of the asymptotic behavior 3d[R*(w+1)+R%(3w+4)+3R(w+3)+9]
e d 8w ze’(d’ZR)
Un(R,) P, (cos®,) a (363 =taATT g 40
) e d is the asymptotic interaction free energy. It is always attrac-
un(R2) P, (C05®2)“¥- (36D tive and has the form of a Yukawa potent[@9]. In Sec.

V C 1, using a numerical calculation, we shall show that this
These coefficients are therefore given by their expression@SYMPptotic expression is quite good even up to separations of
for an isolated particle the order of¢ or less.

ar=: AR,w)eR, (379 2. Analysis of the effective Yukawa potential
B1=0, (37b) There exists an instructive geometric view on the origin
of the attractive part of the two-particle interaction mediated
Bo=—3A(R,w)eR. (370 by the surface-induced paranematic order. It reproduces the
form of the Yukawa potential of Eq40) under the assump-
1. Asymptotic interaction energy tion of large particles R>1) and was presented by one of

the authors in Refl17]. The basic idea is that the overlap-
eping of the paranematic coronas of the two particles reduces
the volume of the energetically unfavorable liquid crystal
ordering, as illustrated in Fig. 3, and therefore the total free
energy. The interaction energy is the free energy of the re-
moved orientational order. If we denote HQ{”(r) the
single-particle order-parameter field centered on particle

To calculate the free energy we use Eff3). By symme-
try, it is equal to twice the contribution corresponding to th
surface of particle 1. In order to calculate this contribution,
we express(r,=R,0,), B(r;=R,0,), andy(r,=R,0,) as
an expansion in Legendre functions:

oo

a(ry=R,01)= 2, AP, %(cosby), (38a)
n;z Vi | V2
Bri=R.01)= 3, ByP,}(cosdy), (380 :
) e
¥ri=R.61)= 2, C,P,’(costy). (389

|
|
|
FIG. 3. The attractive paranematic interaction between the par-
F= %WRZW(]-O_ 12A,+12B,—3C,). (39 ticles comes from the overlapping of the two paranematic coronas
o ) of thicknessé. In the geometric view, the interaction energy is
The coefficientsA,, B,, andC, are easily calculated from gqual to the negative of the free energy of the excess orientational
the asymptotic expansions ef £, andy given in the pre-  order in the dark shaded regidfor an exact definition see Eq.
ceding section. We arrive &=2F+F, whereF, is the  (41)]. The half space¥; andV, are defined by the midplane of
free energy(20) of an isolated particle and particles 1 and 2.

Using Eq.(13) and the orthogonality of the Legendre func-
tions, we obtain
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and switch to the representation by the componqri‘ﬁé(i 0.6 T T TTTTT] T T 117110
=0,...,4)[see Eq.(17)], the interaction energy is calcu-
lated as

4
Fin= —220 ci{ fv [(g™)2+(VaM)21d3r,  (4D)
= 2

whereV, denotes the half space of particle(&e Fig. 3.
This definition leads to the Yukawa potential of E40) in
the limit R>1, however with half the strength. Its advantage
lies in its semiquantitative agreement with E40) and its

simplicity. Using a type of Voronoi cell construction, it is 02

. . . . . . . 0.1 1.0 10.0

extensible to multibody interactions which are important in d—-2R

the study of particle aggregation and the formation of or- FIG. 4. Relative erroD of the force in the Derjaguin approxi-
dered crystalline structures. mation with respect to the exact numerical one, calculated accord-

It was also demonstrated in RqfL7] that the Yukawa ing to the procedure outlined in Sec. V C. The error is plotted as a
potential of Eq.(40) can exactly be derived by approximat- function of the distance to cqntast:d—ZR for a particle of re-
ing the tensorial order parameter through a linear Superposiiuced radiufR= 20 and for various values of the reduced anchoring

tion of the two single-particle solutions centered on particle 1W- Contrary to what is expected, the approximation does not im-
and 2: prove at short distances.

Qii(N=Q"(n+QP(r). (42) To check the Derjaguin approximation, we need to com-

pare theforcesand not the interaction energy. Indeed, since

This approach is in full analogy to the treatment of the two-the Derjaguin approximation does not hold for separations
particle potential in electrostatically stabilized colloids basedarge with respect to the radii of the particle, we cannot fix

on the Debye-Hckel approximation. the correct zero level for the interaction energy. We calculate
the exact forceF= — dF,,;/dd by numerically evaluating the
3. Derjaguin approximation interaction energy,;,;, as will be explained in Sec. V C. In

Fig. 4, we plot the relative errob, defined throughF
=Fp(1+D). As it is seen, the Derjaguin approximation is
rather crude. Moreover, it does not improve as the separation
distancestends to zero, as is normally expected. This is most
probably due to the non-pairwise-additive character of the
force. The error is actually lowest in the intermediate range
1<s<R. Indeed, in the limits>1, the Derjaguin approxi-
énation(44) becomes

The force between two interacting spheres is often calcu
lated in terms of the interaction energy per unit surf&ce
between two parallel plates a distargapart, using the so-
called Derjaguin approximatiofil4]. For two equal spheres
of radii R a distances apart, the force in the Derjaguin ap-
proximation is simplyFp(s)=wRE(s) [14]. Such an ap-
proximation is valid if the interactions are additive and if the
radii of the particles are large with respect to both the rang
of the interaction and the minimum separation distasce _
between the particles. Although in our case, the interaction Fo(s)=— ————, (45)
energy is not pairwise additive, let us examine whether there 3(1+w)?
exists a regime in which the Derjaguin approximation holds.

The interaction energy between two parallel plates, imwhich coincides, in the limitR>1, with the exact
posing homeotropic boundary conditions, immersed in aasymptotic force—dF;,/dd obtained from the asymptotic
nematic liquid crystal was calculated in Rgf2]. For weak interaction energy40), with s=d—2R. Care should there-
induced paranematic order in the isotropic phase, we can ugere be taken in using the Derjaguin approximation for dis-
our quadratic free energiB). The resulting order parameter tances to contact that are comparable with the nematic co-
is everywhere uniaxial, with a nematic director everywhereherence lengtlg [13].
orthogonal to the surfaces. In our reduced units, a straight-
forward calculation gives the exact interaction energy per C. Numerical results

unit surface, . . . .
When the two colloidal particles are an arbitrary distance

Aw?2 d apart, we determine numerically the equilibrium order-
&(s)=— . , (43 parameter texture. To this aim, we truncate the expansions
3(1+w)[e(1+w)+w—1] (26) at some ordef =€ .. Then, with the aid of the coor-

. . . ) . . dinate transformatioli28) and of the orthogonality relations
that is evgrywhe(e attractive. The Derjaguin approximation ) we project numerically the boundary conditiof2)
gives the interaction force onto the Legendre functions of the first ki}™(6,), with
W2 m=2 for the functiona(r,0), m=1 for B(r,6), andm
_ 4R . (44) =0 for y(r,0), and€=m, ... £ a This gives three de-

3(1+w)[e’(1+w)+w—1] coupled sets of linear equations that we solve numerically to

Fp(s)=
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povid ool 1

0.1 1.0 d—°2R
FIG. 6. As Fig. 5, but for spheres of radits=20.

For relatively large particlesR=20), the relative erroA
becomes even smaller, as shown in Fig. 6. It is remarkable

that aroundw=1 the asymptotic approximation gives ex-

determine the unknown coefficientsa, (with ¢
=2,. .. fmad, B¢ (With €=1,... £a), and y, (with ¢
=0, ... £ma- Finally, we vary the ordef . Of the expan-
sions to obtain a given accuracy. Typically, only a few mul-

tipoles (¢ ,ax=10—20) are needed to reach relative errors Ofat
the order of 102 or less. are

1. Interaction energy

We determine the exact interaction energy of the colloidal
particles by inserting the numerically determined expansions
(26) in the equilibrium free energ{l3). The behavior of the
exact interaction energy was studied in some detajlL#.
Here, we concentrate on its comparison with the asymptotic
expression(40), to validate the latter. We set

Fine=Fin(1+4), (46)

where A measures the relative error from the asymptotic
solution. In Fig. 5 we show the behavior &f as a function

of the distance to contact— 2R for small particles R=2)

and various anchoring strengttv. As it is seen, the
asymptotic approximation is quite good up to distances to
contact of the order of. For low anchoring strengthv
<1, the actual interaction energy is larger than the
asymptotic value. For high anchoring strength- 1, the ac-
tual interaction is smaller. The best agreement is for anchor-

tremely good results up to contact for larger spheres.

2. Texture around two particles

According to Eqs(25) and(23), the eigenvalues associ-
ed with the eigenvectofgl) of the order-parameter tensor

Ny(r,60)  a(r,0)+y(r,0)

S 4
a(r,0)—3y(r,0)]?
+ \/ y } + B2(r,0),
(479
Ao(r,0)  a(r,0)+y(r,0)
Sy 4
_ 2
_\/a(r,a) 437(r,6’) \ B8,
(47b
)\3(r,0):_ a(r,0)+y(r,0) 479

So 2 '

ing strength of the order afi=1, for which the relative error while the angled (r, 6) that the eigenvectoe™) makes with

increases up to 0.6 at particle contact.

respect to the axis is

| a(r,0)=3y(r,0)+ [ a(r,0)—3y(r,0)]*+ 168(r, 0)

O(r,0)=tan

25(1.9) . (48

Far from the particles, or for an isolated particle, the tex-value. Therefore, by continuity, we choose as paranematic

ture is uniaxial, withA,=\5. The paranematic directar
thus coincides with the eigenvectel) [see Eq(21a] asso-

directorn the directionel’). In general, however, the tensor
order-parametelQ is biaxial and is characterized by the

ciated with\;, which is the eigenvalue of largest absolute uniaxial scalar order-paramet& in the direction of the
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paranematic director and by the biaxialiB/ in the plane VI. FLOCCULATION TRANSITION
orthogonal to it. They are defined by setting in the diagonal
frame 1,2 &%), in which Q=diag(\;,\»,)\3), Q
=diag(2/38,—1/3S+B,—1/3S—B) [22]. Therefore,

Section V C 1(see also Ref.21]) and the Yukawa poten-
tial of Eqg. (40) show that for large particlesRe>1), the
two-particle interaction mediated by the nematic wetting
layer (in the following abbreviated by, ) is dominated by

=3
S(r,0)=32X4(T.0), (493 its strong attractive part. The consequences of this feature on
) the stability of a dispersion of colloidal particles were inves-
B(r,0)=3[N1(r,0)+2N5(r,0)]. (49D  tigated in detail by Boimik, Stark, and zimer in Ref.[20].

The main idea was to use, e.g., the screened electrostatic
In Fig. 7, we have plotted the contour lines of the scalarinteraction of charged particles to stabilize a colloidal sus-
order parameterS (top) and B (middle), and the field lines pension against the attractive van der Waals interaction well
of the paranematic directar (bottom for small spheres, i.e., above the nematic-isotropic phase transition. Then by lower-
R=2. In Fig. 8, we have plotted the same parameters foing the temperature towards the transition temperaiyre
large spheres, i.eR=20. When the two spheres are close towhich increases both the strength and range of the liquid-
each other, the scalar order parameter makes a diffuse coroneystal (LC) mediated interaction, a flocculation transition
around the two spheres for the small spheres, whereas it &an be induced, i.e., the particles start to aggregate. While
significantly nonzero only in the gap between the spheres fothe transition itself has not been observed so far, the attrac-
the large ones. The biaxiality is maximum in the vicinity of a tive two-particle potential has been demonstrated in excellent
ring which defines a defect, of topological chargd/2, of  experiments by Koevar and co-workers using an atomic
the paranematic directar. The defect location corresponds force microscopg30,31].
to the conditionS=B, i.e., A\ ;=\, [see Eqs(49)]: the two In this paper, we study again the flocculation transition for
orthogonal directiore™) ande® in the symmetry planél,  two reasons. In Ref20], the interaction potentidl, c was
(the plane of Fig. 2 containing the axis and the generic calculated by modeling the liquid-crystalline order with the
point P) become equivalent. Strictly speaking, at the defechelp of an ansatz function. A weak repulsive barrietipc
location the texture again becomes uniaxial, with a paraneeccurred which seems to be an artifact in the construction of
matic director orthogonal to thH , plane and a discoticlike the ansatz function. Second, by using the analytic form of the
order. The main difference between the small and the larg&¥ukawa potential folJ, , the calculation of the total inter-
spheres is that the defect is in the region whis large in  action energy becomes much easier. Therefore, in Sec. VI B,
the former case, whereas it is located in a region wissee ~ we shall discuss a flocculation diagram in terms of the rel-
almost zero in the latter. Regarding the texture, one can segvant parameters of the electrostatic interaction which covers
that the field lines are rather smoothly bent in the case o& much larger range than in R420]. We will, however,
small spheres, while for large ones they start almost radiallgonfirm the flocculation diagram of ReR0].
from the particles and present a kink in the midplane, in the
region whereSis small. A. Two-particle interactions

In the following we consider a colloidal dispersion of par-
ticles subject to van der Waalbl(y), electrostatic ), and

The defect ring is located in the plame-0 of Fig. 2. On  liquid-crystal induced (| ) interactions, wher&,, andUg
this plane,8=0 for symmetry reasons. Then, the location of are taken according to the Derjaguin-Landau-Verwey-
the defect, which corresponds to the conditiop=\,, ac-  Overbeek(DLVO) theory[32,33. In the first approach, we
cording to Eqgs.(47a and (47b) is such thata(r, 8= 7/2) assume that the surface-induced nematic order has no effect
=3y(r,0=x/2). Let us calculate asymptotically, foe=>1, onUy,, andUg, so that the total two-particle potential can be
the defect position. At the zeroth order, the tafatensor is  written asU,=U c+Uy+ Ug.
the superposition of th€ tensors of the two isolated par-  To be concrete, we consider silica particles of radius
ticles. Then, one easily finds that the defect is located at &250 nm  dispersed in the liquid crystal 4-
radial distanceh=d/2 from the axis joining the centers of n-octyl-4’-cyanobiphenyl(8CB). The van der Waals interac-
the particles. This corresponds to a defect ring having a dition between identical particles is always attractive. It reads
ameter equal to the distance between the centers of the tWa4]

3. Defect position

spheres.
To verify this lowest-order prediction, in Fig. 9 we plot H| 2R? 2R? d?—4R?
the ratio between the ring diameteh 2nd the distance be- Uw=— 6| 42— 4R? + ?Jr In o2 . (50

tween the two spheres as a function of the distance to contact
d—2R. As one sees, the approximate estimation is rathewhered is the center-of-mass separation of the particles and
good: for lower anchoring strength, the defect diameter isH=1.1kgT is the Hamaker constant for silica particles sus-
actually slightly larger, while for higher anchoring it is pended in the compound 8CRO0]. Strictly speaking, via
smaller. The deviation from the lowest-order solutibn retardation effects, the Hamaker constant also depends on the
=d/2 decreases as the spheres move further apart or becoseparatiord [34]. However, in our problem this dependence
bigger. In this case, the defect ring lives in a region where thés not crucial[20]. Note that in the followingve do not use
order-parameter is small. reduced unitsall physical quantities keep their dimensions.
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FIG. 8. Same as Fig. 7, but fé&t=20.

0.01

8 e (d—2R)/¢
Ue=~— ?L§2(30A)27d : (52

§\\\\\\\W§\\\\\W/////Z e s s s o

—T*)]*2 the reduced surface coupling constant. We recall
— also that the nematic coherence length is given &y
=[L/(a(T—T*))]¥2 In Sec. VC, it was shown that for

—
N7 \ large particle radii, the Yukawa potential agrees well with the
/ \ numerical results down to a distance to contact of the order
of &£&. Even for smaller distances, it gives a good approxima-

tion to the interaction energy. We use E§2) to obtain an

FIG. 7. Paranematic order parameter between two spheres wigstimate for the strength of the Yukawa potential in the case
reduced radiusR=2 and reduced anchoring=4. Top: contour ~R>¢,
lines of the scalar order paramet®&rMiddle: contour lines of the

biaxiality parameteB. bottom: field lines of the paranematic direc- 4
tor n. |ULC(d:2R)|:?LR%

-3

({1111)

\
7

w 2

w+1 (53

We stabilize the colloidal dispersion by electrostatic re- T T T I T T T
pulsion. The particles possess an electrical surface charge a -
) L 2h
densityqs, and monovalent salt of concentratiopis added — L _
to the solvent. This results in the two-particle potenftéd] d N\ = 0.1

872 R
UE=—8:§In(1—e"(d2R)). (51)
2 K

The range of the interaction is determined by the Debye = -
lengthx ~*=[e,kgT/(87e’n,)]"2 wheree, denotes the di-
electric constant of the solvent arelis the fundamental : : : | : ; ;
charge. Note that E(q51) is derived in the Derjaguin ap- 0‘90 > 4
proximation under the assumptioi- 2R, k" 1<R. For real- d—2R

istic values of«~* andqs, see Refs[20,31. FIG. 9. Ratio between the defect ring diametér @nd the dis-

To include the liquid-crystal mediated interaction, we Usetance between the sphemss a function of the distance to contact
the Yukawa potential of Eq40). The latter, restoring to all d—2R of the spheres. Full linefR=2; dashed linesR=5. The

the physical quantities their dimensions, is given explicitlytwo upper curves are for a normalized anchoring stremgth0.1
by and the two lower ones are for=4.
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The rational function in the reduced surface coupling con- 100 i icall
stantw is monotonously growing likev? for small w and @ stabilised
approaching one at larger. Therefore, we find that the g flocculation

strength of the Yukawa potential increases, like its rasge = induced by Up ¢

when the temperature is lowered towards the nematic- e

isotropic phase transition dt,. For example, for the mate- "go

rial parameters chosen immediately below, we find that the ° 10¢ 1

strength increases by a factor of 6 when cooling down from Y flocculation

T.+10 K to T.. When discussing the effect of the interac- = without Uz ¢

tion U ¢, we shall use the parameters of 8CB=0.12

x 10" erg/(cniK), L=1.8x10 °dyn, T.—T*=13K, 1005 0.0007
and T.=314.8 K], which give a coherence leng#(T,)
=10.74 nm at the phase transition. Furthermore, we choose
W: 1.25 e'fglcrﬁ a!’]d SQ:0'45' In a_'ccord V‘,”th Ref[20]. FIG. 10. Flocculation diagram in terms of the tunable param-
Finally, all interactions in the following section are referred giers of the electrostatic interaction, i.e., the surface charge density
to the thermal energisT at room temperature, and, as al- 4 and the Debye lengtk~*. The four different regions I-IV char-
ready mentioned, the particle radius is 250 nm. acterize how a colloidal dispersion of charged particles reacts on
U, c. The points(a)—(e) refer to the diagrams in Figs. 11 and 12.

0.001 0.01

surface charge density g, [e/nm?]

B. Flocculation diagram

When discussing the total interaction energy for varyingnot interact (=1), 7 is given by the time an independent
parameters, we will find different shapes of the two-particleparticle needs to diffuse a distanBetimes the inverse vol-
potential which affect the flocculation transition. Particlesume fraction ¢. Clearly, in a very dilute dispersiong(
start to aggregate when the interaction potential exhibits @mall), particles hardly come close to each other and doublet
minimum U ,;,<O at finite distances. If the potential mini- formation is very rare. The factdy wheres=d— 2R denotes
mum is shallow, i.e., just severiy T deep, a particle doublet the distance to contact, incorporates influences from the two-
will break up again, and a phase equilibrium of an aggreparticle interaction; in the presence of a potential barrier,
gated and dispersed state occ[B4]. The higher potential increases considerably even for moderate The ratio
energy in the dispersed state is compensated by the largex,/D(s) takes into account corrections of the diffusion con-
entropy. On the other hand, whéd ;| tends to 1RsT or  stant due to hydrodynamic interactions. Note that, gen-
even higher values, strong attraction occurs that leads to @ally meanss=0, i.e., the particles stick together at direct
nonequilibrium phase with all the particles aggregated. Thigontact. If, however, for very small particle separations a
corresponds to the flocculation transition that we aim to in-strong repulsion sets iy, is taken as the location of the
vestigate. As a further feature of our interaction potentialspotential minimum which is responsible for the formation of
we will also encounter potential barriers which slow downthe particle doublet.
the flocculation or even “kinetically stabilize” the disper- In the following, we assume a volume fractign=0.1 so
sion. that for a typical shear viscosity of 0.4 P we arrive rét

Obviously, the observation of a flocculation transition is a=5 s. We say that a dispersion is kinetically stabilized by a
matter of time scale on which the experiments take placepotential barrier ifr>1 h, which corresponds tb=720.
The theory of aggregation kinetics determines the charactefyjith the help of the algebraic program Maple, we have nu-
istic time 7 for the formation of a particle doublet 834,35  merically calculated the factor for our potential U, to
check when such a kinetic stabilization in the flocculation

2
= 1 R_|, (54)  diagram, to be discussed below, sets in. In this way, we have
¢ 6Dg determined the transition lines between regions I-Ill and
. II-1V in Fig. 10. To gain further insight into the factdr we
where the factof is given by perform a saddle-point approximation. We replakg by its
harmonic approximation around the maximun,,, of the
I=2RJO€ Do exp(Uior/kgT) s (55) potential barrier. Then we can evaluate the integral in Eq.
smnP(S)  (2R+5)? ’ (55) when we approximats by s, otherwise and choose
Smn=0. From the magnitude of the curvature,=
which contains the ratio — Ui/ 9s%|s__, we deduce a characteristic length
=(2kgT/co)¥? and make the approximation of replacing
D(s) _[2s/R for s<R (56 Smec Dy & which finally gives the estimate!
Doy 1 for s>R. =expUmnax/ksT)/2. From our criterion for kinetic stabiliza-

tion, | =720, we findU ,,,=7.3 kgT. Surprisingly, in most
In Eq. (54), ¢ is the volume fraction of the particles in the cases the exact calculation of the integral in Egp) gave
solvent, andD,=kgT/(677R) is the single-particle diffu- potential barriers withJ ,,,, between 7 and BgT. This dem-
sion coefficient depending on the solvent viscosity For  onstrates that the Boltzmann factor is the determining quan-
particles that stick together when they meet but otherwise déty in | and therefore inv.
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FIG. 11. Total two-particle potential in units &ET as a function of distance to contatt 2R. The potentials are shown for different
parameters of the electrostatic interaction, as indicated in the inset, and at various temperatures rélatifdédabelga)—(d) refer to a
location in the flocculation diagram of Fig. 10.

We will also encounter two-particle interactions where thenm). It is plotted in terms of the tunable parameters of the
particle doublet settles into a potential minimum without tra-electrostatic interaction, i.e., the surface charge dertgity
versing a potential barrier. Here the question arises howind the Debye lengtik ~1. We distinguish four regions: in
stable the doublet is. Unfortunately, the familiar Kramers rateegion | the particles are completely aggregated withdus
[36] is not applicable, since it involves the curvature of thesince the electrostatic interaction is not sufficient to stabilize
potential maximum over which a particle escapes. In oUkne dispersion against the van der Waals force. For large
case, this potential maximum is located at infinity&  gyrface charge density and interaction range, as in region I,
=0). It has zero curvature, which gives an infinite escapgne gispersion is completely stabilized eveifc is turned
time. The the(_)ry for our problem formulates the escape time, A potential minimum at finite distances does not occur, or
as a double integral over the particle separafid| that it is not deep enough, according to our discussion above, to
r{rigger flocculation. Both regions are separated by areas |l
and IV. In region lll, flocculation is induced by lowering the
temperature towards; . Different types of interaction poten-
tials occur which are illustrated in Fig. 11 for various loca-
) tions in the flocculation diagram of Fig. 10 labelé—(d).

o R In Fig. 1X(a), the graph forT>T_ exhibits the usual “pri-

i : (57 . :
6D oexp(—Ug/kgT) mary minimum” at short distances due to the van der Waals
interaction which is followed by a “primary potential bar-
Again, we consider a particle doublet as stable whgn  rier” for increasing separations well known in colloids sci-
exceeds 1 h, which for the parameters already introducednce. The electrostatic repulsion is just strong enough to sta-
results in a potential depth &f,=9kgT. Compared to the bilize the colloidal suspension kinetically. Lowering the
free diffusion timeR?/(6D,)=0.5s, it enhancesyy by a  temperature reduces the barrier and induces flocculation.
factor of 7200. We used this criterion to establish the boundMoving down the diagonal from left to right in the floccula-
ary line between regions Il and Il in Fig. 10. tion diagram, we arrive at locatiof). In the corresponding

In the following, we discuss in detail the flocculation dia- Fig. 11(b), the primary minimum af > T, is no longer vis-

gram of Fig. 10(calculated for a particle radiuR of 250 ible due to the increase in the surface charge density. To

give an upper bound for the escape ti[8&], defined as the
time ty that a particle needs to diffuse a distariRevhen
leaving a potential well of depthl,
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60 separation. For large separations, the interaction follows the
= 50 Yukawa-like potential given by Eq40), which can be ex-
e plained on simple grounds. Our numerical results show that,
= 40r for colloids large as compared t9 this simple potential is
3 30 | actually a very good approximation even up to separations of
= the order of¢. We obtain attractive interactions for colloids
> 20 much larger thar¢ and the possibility of short-range repul-
J{D 10| sions for colloids of size comparable §oWe have discussed
S) Te the paranematic texture between two colloidal particles,
0 , , , . , , , showing the appearance of a defect of the paranematic direc-
10 20 30 40 50 60 70 80 tor, in the form of a ring of topological charge1/2 located
distance to contact d—2 R [nml in the midplane of the two particles. The diameter of the ring

is approximately equal to the distance between the centers of
FIG. 12. Total two-particle potential in units &T as a func-  the two particles, which is easily explained by supposing that
tion of distance to contact—2R. The potential is shown at various 4t the lowest order the total paranematic tensor is the super-
temperatures relative t6.. The parameters of the electrostatic in- position of the paranematic tensors for the two isolated par-
teraction is §howp in the insgt. The lalte) refers to a location in ticles. The ring is surrounded by a sheath of biaxial order.
the flocculation diagram of Fig. 10. Finally, using the Yukawa-like expressio@0) for the
paranematic interaction, we have examined the stability of a
colloidal suspension by considering the interplay of the
induce flocculation, one has to cool the dispersion closer t({)?arangmatlc interaction with the standard DLVO Interac-
T.. Moving further down the diagonal, a shallow potential ions, i.e., van der Waals attractions and do'u.ble—layer elgctrl-
cal repulsions. We have found that the stability of a colloidal

minimum at around 26 nm appearslat T, as illustrated in ; S :
Fig. 11(c), which leads to a slight phase coexistence. How-Suspension can be significantly affected by the paranematic

ever, a clear nonreversible aggregation of the particles Wi"nteracuon: the latter can either trigger flocculation or kineti-

be induced when the temperature is decreased. A diferefff ¥ SEE S8 RPARARD SEPRENE T 08 KETh B
feature occurs in Fig. 1d), which is located close to the P 9

transition line to the stabilized dispersion; whereas in the[aensc:egneigzri?nlé\;%”zarameters. These properties could be

previous cases the flocculation transition sets in gradually

with decreasing temperature, here a sudden transition is ob-

servable within a few ten kelvins. Crossing the transition line

from location (d), the minimum atT=T. becomes more

shallow and ultimately vanishes. Region IV in the floccula- Among the various possible definitions of the spherical

tion diagram of Fig. 10 identifies a kinetically stabilized dis- harmonics, we use the form

persion. As illustrated by Fig. 12, &=T., a minimum in

the total interaction energy is separated from large distances 20+1 (£—m)! ,

by a potential barrier which prevents the formation of stable Yem(0.0) =\ —7— W—m)'mm(cose)e'mvﬂ (A1)

particle doublets. The interaction becomes totally repulsive '

when moving into region II. where theP,™(cos6) are associated Legendre functions of
the first kind,

APPENDIX: DEFINITION OF THE SPHERICAL
HARMONICS

VIl. CONCLUSIONS
(_ )€+m €+m
(1-t)™2——(1-t3)¢.  (A2)

In this paper, following previous workgl5-17,20,2], P,M(t)=
‘ 2001 dettm

we have reconsidered the interactions between spherical col-
loids wetted by a corona of paranematic order in the isotro- _ . _
pic phase of a nematogenic material. We have calculated thEne Legendre functions obey the orthogonality relations
contribution to the total interaction that is mediated by the

paranematic order, assuming a radial anchoring of the direc- Jl P,™(t)P,,"(t)dt= (€+m)!

tor. Our results, based on a quadratic approximation of the g ¢ ¢ (€+1/2)(€—m)!
free-energy density, are exact in the limit of weak induced

paranematic order if the temperature is not too close to thevheres,,, is the Kronecker delta. These orthogonality rela-
nematic-isotropic phase transition. We have obtained analytiions imply the orthonormality of the spherical harmonics
cal results in the asymptotic regime where the distance be-

tween the colloids is large with respect to the coherence " .

length £ of the nematic order, and numerical results for any f Ym0, )Yy (6, )SINOAOdS=5¢¢1 Sy - (A4)

Seer, (A3)
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